Construction of Compactly Supported Tight Wavelets Frames

نویسنده

  • Ming-Jun Lai
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compactly Supported Tight Aane Spline Frames in L 2 (ir D ) Compactly Supported Tight Aane Spline Frames in L 2 (ir D )

The theory of RS2] is applied to yield compactly supported tight aane frames (wavelets) in L 2 (IR d) from box splines. The wavelets obtained are smooth piecewise-polynomials on a simple mesh; furthermore, they exhibit a wealth of symmetries, and have a relatively small support. The number of \mother wavelets", however, increases with the increase of the required smoothness. Two bivariate const...

متن کامل

A recursive construction of a class of finite normalized tight frames

Finite normalized tight frames are interesting because they provide decompositions in applications and some physical interpretations. In this article, we give a recursive method for constructing them.

متن کامل

Compactly Supported Symmetric C∞ Wavelets with Spectral Approximation Order

In this paper, we obtain symmetric C∞ real-valued tight wavelet frames in L2(R) with compact support and the spectral frame approximation order. Furthermore, we present a family of symmetric compactly supported C∞ orthonormal complex wavelets in L2(R). A complete analysis of nonstationary tight wavelet frames and orthonormal wavelet bases in L2(R) is given.

متن کامل

Compactly supported tight and sibling frames with maximum vanishing moments

The notion of vanishing-moment recovery (VMR) functions is introduced in this paper for the construction of compactly supported tight frames with two generators having the maximum order of vanishing moments as determined by the given refinable function, such as the mth order cardinal B-spline Nm. Tight frames are also extended to “sibling frames” to allow additional properties, such as symmetry...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007